Software Engineering within a Digital Business Ecosystem

Giulio Marcon

Salzburg University of Applied Sciences, A-5412 Puch / Salzburg, Austria

July 6, 2006

Authors

- Giulio Marcon
 Salzburg University of Applied Sciences, A-5412 Puch / Salzburg, Austria
- Angelo Corallo eBMS - ISUFI, University of Lecce, 73100 Lecce, Italy
- Maurizio de Tommasi
 eBMS ISUFI, University of Lecce, 73100 Lecce, Italy
- Thomas Heistracher
 Salzburg University of Applied Sciences, A-5412 Puch / Salzburg, Austria

Outline

- Natural language software specification
- 2 An ecosystem of companies and components
- Code generation
- Synchronization of specification from adapted software

 Standard current practices (UML) drop very soon below the level of understanding of the customers, contrarily to natural language based techniques (SBVR).

SBVR in the Model-Driven Architecture

 According to the vision of the Object Management Group, SBVR is the language of choice for Computational Independent Models in the Model-Driven Architecture.

SBVR model example

branch

Concept Type: organization function

Definition: rental organization unit that has rental responsability

car movement

Definition: planned movement of a rental car of a specified car group from a sending

branch to a receiving branch

receiving branch

Concept Type: role

Definition: branch that is the destination of a car movement

sending branch

Concept Type: role

Definition: branch that is the origin of a car movement

car movement has receiving branch

Necessity: each car movement has exactly one receiving branch

car movement has sending branch

Necessity: each car movement has exactly one sending branch

rental car is assigned to car movement

Necessity: At most one rental car is assigned to each car movement

car movement being international

Concept Type: characteristic

Definition: car movement having country of sending branch that is not the country of

receiving branch of the car movement.

Service Oriented Architecture with a Digital Ecosystem

How a request can be satisfied

- Some implementor finds the request and offers to develop it;
- several components existing in the digital ecosystem can be re-used to satisfy the request and the additional parts necessary are developed by some implementors;
- all the necessary components are already in the digital ecosystem and only fine-grained optimization prior to deployment needs to be done.

Levels of automation

- Decompose the request/specification in atomic units;
- match the atomic components to the ones available;
- offer the best solutions to the requester;
- combine the components to satisfy the request;
- open bids for developers to implement missing components.

Zachman Framework WHAT HOW WHERE WHO WHEN WHY MOTIVATION DATA **FUNCTION** NETWORK **PEOPLE** TIME List of Processes the List of Organizations Important to the Business List of Events/Cycles Significant to the Business Lists of Business Goals/Strategies SCOPE **Business Performs** (contextual) Entity = Class of Process = Class of Business Process People = Major Organizational Unit Ends/Means = Major Business Goal/Strategy **Business Thing** e.g., Semantic Model e.g., Business Process Model e.g., Business Plan e.g., Business Logistics System e.a., Work Flow Model e.g., Master Schedule BUSINESS MODEL {conceptual} Entity = Business Entity Relationship = Business Process = Business Process Node = Business Location Time = Business Event End = Business Objective People = Organization Unit I/O = Business Resources Relationship Link = Business Linkope Cycle = Business Cycle Means = Business Strategy Work = Work Product e.g., Business Rule Model SYSTEM MODEL {logical} Entity = Data Entity TECHNOLOGY MODEL e.a., Physical Data Model e.a., System Design e.g., Presentation Architecture e.g., Control Structure e.a., Rule Design (physical) Entity = Segment/Table/etc Relationship = Pointer/Key/etc Process = Computer Function People = User End = Condition Means = Action Cycle = Component Cycle 1/0 = Data Flements/Sets Link = Line Specifications Work = Screen Format Builder **DETAILED REPRESENTATIONS** e.g., Data Definition e.g., Program e.g., Network Architecture e.g., Security Architecture e.g., Timing Definition e.g., Rule Specification {out-of-context} Entity = Field Process = Language Statement I/O = Control Block Node = Address Link = Protocol People = Identity Time = Interrupt Cycle = Machine Cycle Work = Job lationship = Address

 From row 2, the conceptual business model, to row 3, the logical system model.

From SBVR models to UML class diagrams and code

 Example from ruleset for transformation of unary fact types (characteristics).

Round-trip engineering with SBVR

- An SBVR model is created;
- the corresponding UML models are generated;
- code is generated from the annotated UML models;
- UML models or the source code are modified;
- the original SBVR model is updated with the modification.

References

Heistracher, T., Kurz, T., Marcon, G., Masuch, C.:

Collaborative software engineering with a digital ecosystem.

In: Proc. International Conference on Global Software Engineering, Costão do Santinho, Florianópolis, Brazil (2006) (accepted).

Nachira, F.:

Toward a network of digital business ecosystems fostering the local development. Discussion paper.

http://www.digital-ecosystems.org/doc/discussionpaper.pdf (2002)

OMG:

Semantics of Business Vocabulary and Business Rules Specification. (2006) First interim specification, http://www.omg.org/docs/dtc/06-03-02.pdf.

G. Marcon, H. Okada, T. Kurz, and T. Heistracher.

D16.3, Report on Adaptive Service Generator.

DBE Project, EU-IST 507953, June 2006.

Software Engineering within a Digital Business Ecosystem

Giulio Marcon

Salzburg University of Applied Sciences, A-5412 Puch / Salzburg, Austria

July 6, 2006